首页> 外文OA文献 >Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations
【2h】

Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations

机译:参数化积极性为高阶保留磁通限制器   有限差分WENO格式求解可压缩欧拉方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we develop parametrized positivity satisfying flux limitersfor the high order finite difference Runge-Kutta weighted essentiallynon-oscillatory (WENO) scheme solving compressible Euler equations to maintainpositive density and pressure. Negative density and pressure, which often leadsto simulation blow-ups or nonphysical solutions, emerges from many highresolution computations in some extreme cases. The methodology we propose inthis paper is a nontrivial generalization of the parametrized maximum principlepreserving flux limiters for high order finite difference schemes solvingscalar hyperbolic conservation laws [22, 10, 20]. To preserve the maximumprinciple, the high order flux is limited towards a first order monotone flux,where the limiting procedures are designed by decoupling linear maximumprinciple constraints. High order schemes with such flux limiters are shown topreserve the high order accuracy via local truncation error analysis and byextensive numerical experiments with mild CFL constraints. The parametrizedflux limiting approach is generalized to the Euler system to preserve thepositivity of density and pressure of numerical solutions via decoupling somenonlinear constraints. Compared with existing high order positivity preservingapproaches [24, 26, 25], our proposed algorithm is positivity preserving by thedesign; it is computationally efficient and maintains high order spatial andtemporal accuracy in our extensive numerical tests. Numerical tests areperformed to demonstrate the efficiency and effectiveness of the proposed newalgorithm.
机译:在本文中,我们针对高阶有限差分Runge-Kutta加权本质非振荡(WENO)方案开发了可满足通量限制器的参数化正性,该方案求解可压缩的Euler方程以维持正密度和压力。在某些极端情况下,许多高分辨率计算都会出现负密度和负压,这些密度和压力通常会导致模拟爆炸或非物理解。我们在本文中提出的方法是求解标量双曲守恒定律的高阶有限差分方案的参数化最大原理保持通量限制器的非平凡归纳法[22,10,20]。为了保留最大原理,将高阶通量限制为一阶单调通量,其中限制程序是通过将线性最大原理约束解耦来设计的。通过局部截断误差分析和具有轻度CFL约束的广泛数值实验,显示了具有此类通量限制器的高阶方案可保留高阶精度。将参数通量限制方法推广到Euler系统,以通过解耦一些非线性约束来保持数值解的密度和压力的正性。与现有的高阶正性保存方法[24、26、25]相比,我们提出的算法是通过设计保留正性的。在我们广泛的数值测试中,它计算效率高,并保持高阶的时空精度。进行了数值测试,以证明所提出的新算法的效率和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号